

Nachhaltige Mediennutzung im Berufsschulunterricht Neue Herausforderungen für Lehrkräfte durch den Einsatz von Schweißsimulatoren

19. Hochschultage Berufliche Bildung (Köln)

27. Fachtagung der BAG Elektrotechnik, Informationstechnik, Metalltechnik, Fahrzeugtechnik

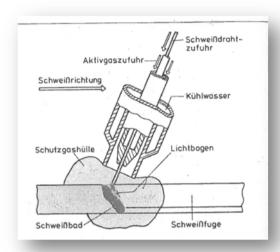
(Fachtagung 8.2, Arbeitskreis 5 (14.03.2017))

Dipl.-Päd. Sven Schulte

Agenda

- 1. Ausgangssituation und Herausforderungen
- Das Forschungsprojekt MESA Kontext und Fragestellung
- 3. Ein Blick in die Praxis: Wie funktioniert der Schweißsimulator?
- 4. Didaktische Konzeption zur Einbindung der Schweißsimulation in berufsbildenden Schulen
- 5. Fazit und Ausblick

1. Ausgangssituation und Herausforderungen



1. Ausgangssituation und Herausforderungen – Der Arbeitsmarkt

- Leistungsdruck und Kostendruck (z.B. in Automobil-Branche, Brückenbau)
- Hohe Verletzungs- und Krankheitsgefahr (u.a. auch Ergonomie)
- Demografischer Wandel (aktuell sind 46% der Schweißer/innen > 50 Jahre alt)
- Sprachliche Barrieren (hoher Anteil an Personen mit Migrationshintergrund, lag 2016 bei 19%)
- Fachkräftemangel in der Branche

1. Ausgangssituation und Herausforderungen – die Ausbildung

- Vermittlung eher durch "traditionelle" Lehrverfahren, gleichzeitig "stiefmütterliches" Dasein in Erstausbildung
- langjährige Erfahrung und hohe Identifikation mit dem Beruf (besonders bei Ausbilder/innen bzw. Trainer/in)
- Hemmschwellen bei Anwendung und Einsatz digitaler Medien und bei Heranführung an neue Aufgaben

Fachpraxis Metalltechnik (Cornelsen Verlag, 2002, S. 400)

2. Das Forschungsprojekt MESA

2. Das Forschungsprojekt MESA – Kontext und Fragestellung

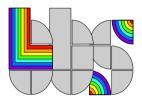
- Name: MESA Medieneinsatz in der Schweißausbildung
- Laufzeit: 01.08.2015 31.01.2018
- Programm: Digitale Medien in der beruflichen Bildung
- Ziel: Erforschung von digitalen Medien zur Qualifizierung von Schweißer/innen, Fokus auf Trainingssimulatoren
- Koordination: Benjamin Knoke, BIBA Bremer Institut für Produktion und Logistik GmbH
- Weitere Informationen auf: http://mesa-projekt.de

GEFÖRDERT VOM

2. Das Forschungsprojekt MESA – Kontext und Fragestellung

- gefahrloses Ausprobieren
- kostengünstiges Lernen
- Möglichkeit aus Fehlern zu lernen
- Transferaspekt
- Erlernen von Funktionsprinzipien ("Theorie der identischen Elemente")
- 1. Für wen (Lernende und Lehrende) ist ein Schweißsimulator sinnvoll?
- 2. Was kann mit dem Simulator gelernt bzw. vermittelt werden?

http://aerotask.de/neuer-airbus-a320-flugsimulator-in-dortmund-bei-der-dasa/


3. Einblicke in die Praxis

3. Ein Blick in die Praxis – Wie funktioniert der Schweißsimulator?

Evaluationsprojekt Prüfungsvorbereitung

 Berufsbildende Schulen für den Landkreis Wesermarsch (Brake, Schüleranzahl: ca. 2400, Lehreranzahl: 136)

Fragestellung:

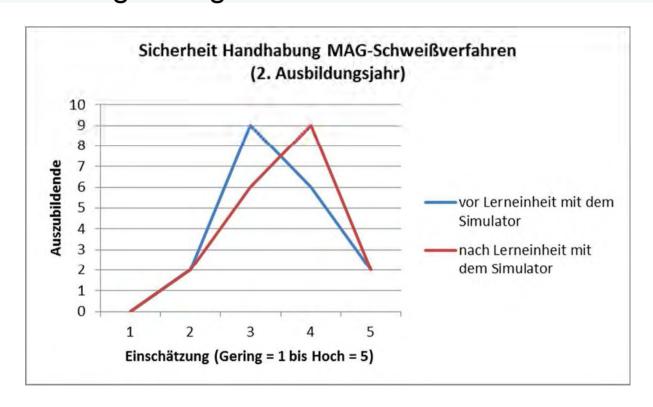
"Ist der Schweißsimulator als Instrument zur Vorbereitung der Auszubildenden auf die praktische Gesellenprüfung Teil I und II geeignet?"

Durchführung:

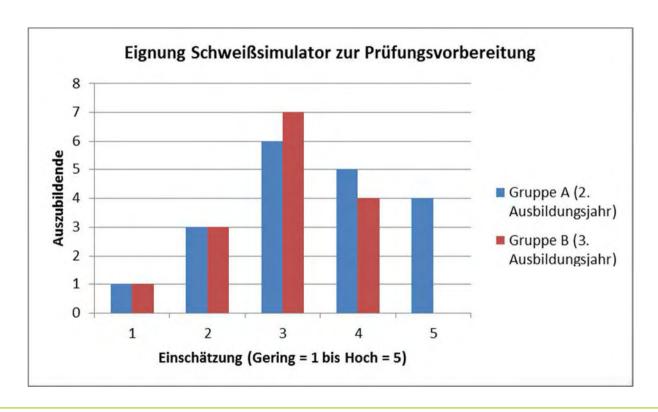
- Einsatz des Schweißsimulators in 2 Teilzeitklassen.
- selbstständige Bearbeitung einer Schweißaufgabe
- Erhebungsmethodik: Fragebögen vor und nach der praktischen Übung am Schweißsimulator

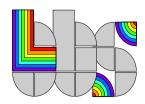
Evaluationsprojekt Prüfungsvorbereitung

Arbeiten in Kleingruppen


detaillierte Auswertung

Evaluationsprojekt Prüfungsvorbereitung

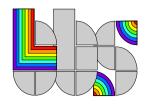

Wie sicher fühlen Sie sich in der Anwendung und Handhabung bezüglich des MAG-Schweißverfahrens?


Evaluationsprojekt Prüfungsvorbereitung

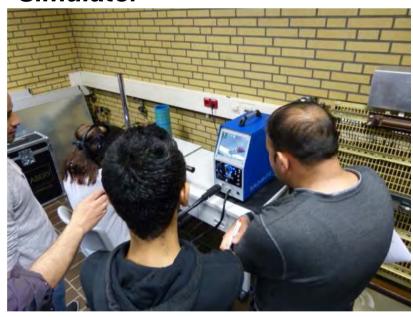
Eignet sich der Schweißsimulator zur Prüfungsvorbereitung (GP-T1 und GP-T2)?

Evaluationsprojekt Berufsorientierung

 BBS II Leer (Schüleranzahl: ca. 2300 Lehreranzahl: 130)

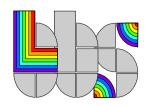

Fragestellung:

"Eignet sich der Schweißsimulator zur Berufsorientierung von Förderschüler/innen mit Migrationshintergrund?"


Durchführung:

- digitale Medien zur Bestimmung von Schweißfachbegriffen
- betreutes MAG-Schweißen am Simulator und in der Schweißkabine mit Einschätzung der Schweißfertigkeit
- Erhebungsmethodik der Schweißfertigkeitsanalyse durch Selbst- und Fremdeinschätzung

Evaluationsprojekt Berufsorientierung


11 Schülerinnen und Schüler mit Migrationshintergrund schweißen mit dem Simulator

Zuordnung der Fachbegriffe

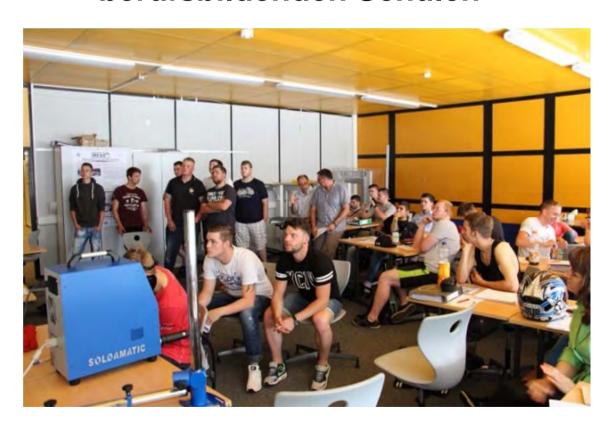
Evaluationsprojekt Berufsorientierung

Schweißfertigkeit beim Simulatorschweißen

		2 Parameter eingehalten		0 Parameter eingehalten
Schweißfertigkeit der Lernenden	1	7	3	0

⁴ Lernende können sich vorstellen auch im Beruf zu schweißen (3 "Vielleicht")

Schweißfertigkeit beim Schweißen in der Kabine


	3 Parameter eingehalten		1 Parameter eingehalten	
Schweißfertigkeit der Lernenden	2	4	3	1

2 Lernende können sich jetzt noch vorstellen im Beruf zu schweißen (2 mit "Vielleicht") geringe Veränderung der Schweißfertigkeit vom Simulator-Training zum realen Schweißen

Zwischenfazit der Erprobungen

- geeignet für die Vermittlung erster Kenntnisse in den verschiedenen Schweißverfahren
- sehr gut in den Unterricht einzubinden, aber didaktisches Konzept für die gesamte Klasse notwendig
- weckt Interesse bei den Schüler/innen (u.a. Neugier, Ehrgeiz, neues Medium als Lernanreiz/Motivation)
- Simulator bildet nach Einschätzung der Jugendlichen realitätsnah ab
- Simulator kann als Entscheidungshilfe zur Berufsorientierung eingesetzt werden

4. Didaktische Konzeptionen für den Einsatz in berufsbildenden Schulen

4. Didaktische Konzeption zur Einbindung der Schweißsimulation in berufsbildenden Schulen

Bisherige Erkenntnisse:

- gesamte Gruppe sinnvoll beschäftigen (Stationenlernen, Gruppenarbeit)
- 3 bis 4 Personen pro Gruppe

Anforderungen an Lehrkräfte:

- hohes Verständnis der Funktion und Bedienung des Simulators
- Umgang mit Feedback des Simulators
- Bezug zur Arbeitswelt der Lernenden
- Schweißfehler beurteilen können.

Blended-Learning-Ansatz

Präsenzlernen

PC/E-Learning/ LernApp

Micro-Learning

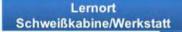
E-Learning

Selbstorganisiert es Lernen

Seminar/ Klassenrauma

Mobiles Lernen

Simulator


Lern-/ Arbeitsaufgabe

Arbeitsprozessorientiertes Lernen

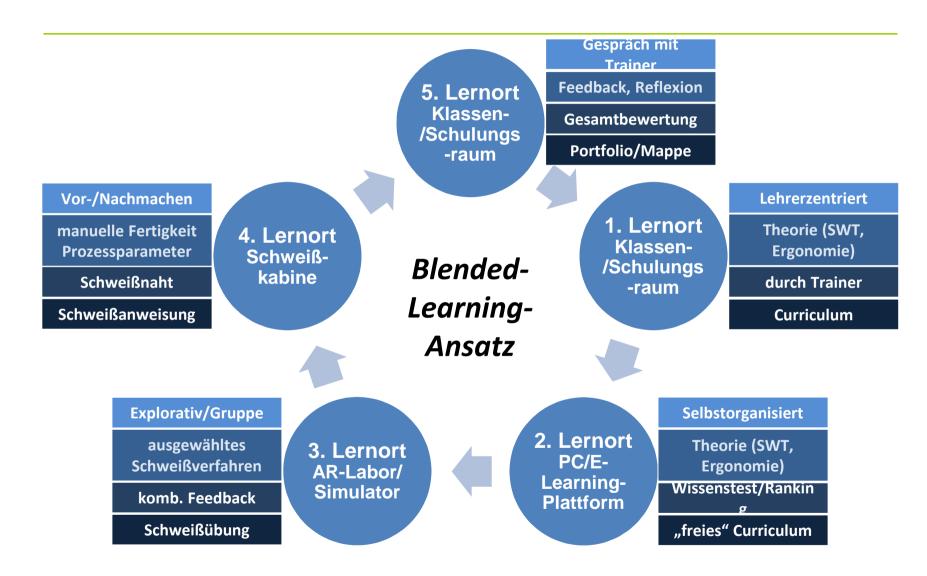
Blended-Learning-Ansatz

 Einbindung der Vorteile unterschiedlicher (digitaler) Medien (Lernplattform, Lernapp) und Lernorte (Klassenraum, Schweißkabine).

- Lernen im realen Prozess
- Rahmenbedingungen des Betriebs
- Bewertung des Schweißprozesses

Lernort Schweißsimulator

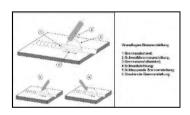
- · Lernen in Gruppen
- Exploratives Lernen
- Fokus auf bestimmte Aspekte
- Standardisiertes Feedback
- Spielerischer Wettbewerb

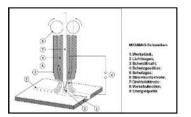

Lernort Unterricht/Seminar

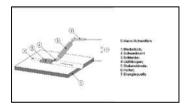
- Schweißtechnik Arbeitssicherheit und Ergonomie
- Lehrplan/Curriculum als Maßstab

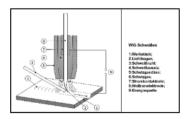
Lernort PC-Arbeitsplatz

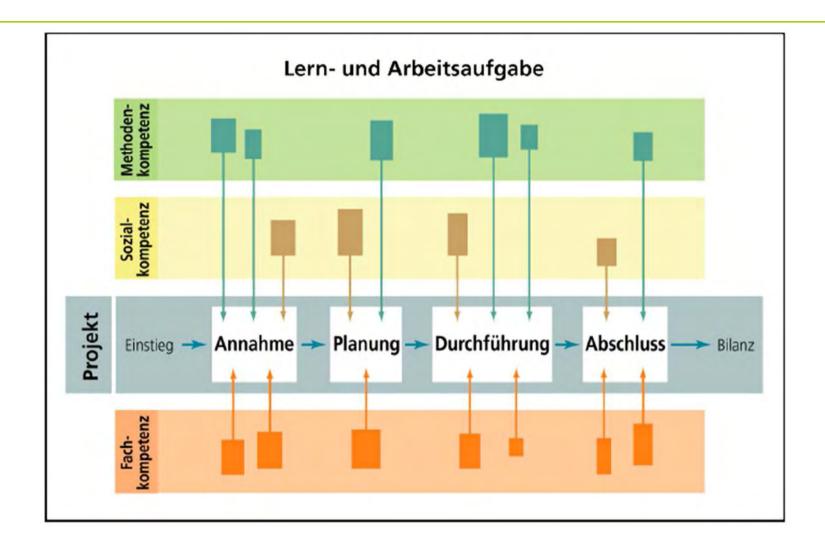
- Selbstorganisiertes Lernen
- Vertiefung der Grundlagen
- Wissenstest vor Praxiseinstieg

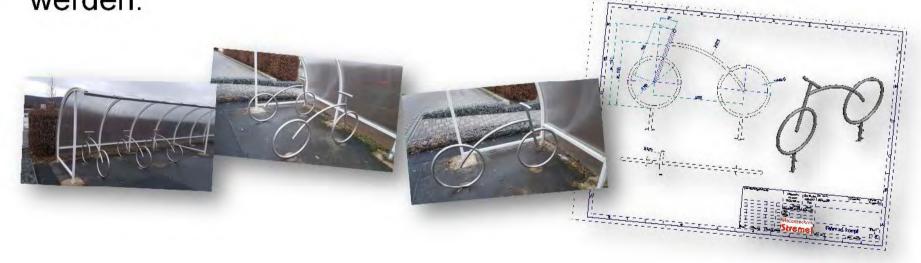


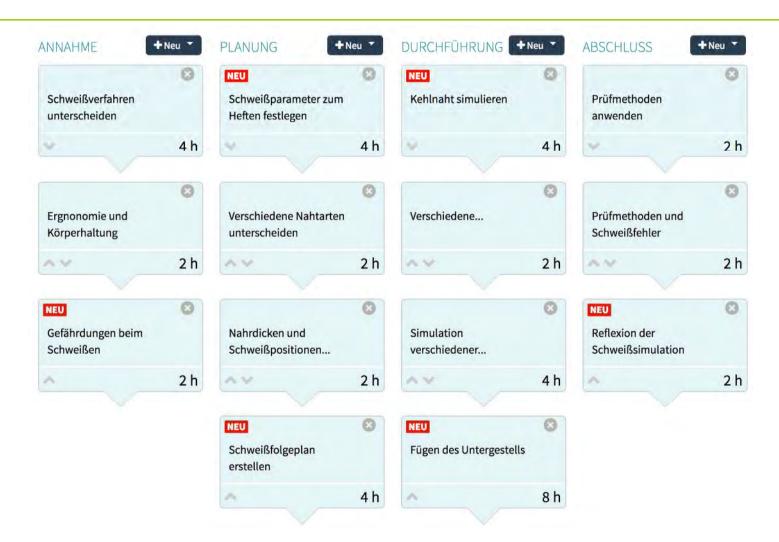

Eine App als ergänzende Lernhilfe


- Eine Applikation für mobile Geräte wird entwickelt und erprobt, die die folgende Funktionen unterstützt:
 - Die wesentlichen Begriffe von Schweißprozessen werden an Skizzen verdeutlicht.
 - Nutzer können die App mit eigenen Inhalten erweitern.






Das Konzept der Lernaufgaben


Lern- und Arbeitsaufgabe für die Umsetzung in Ausund Weiterbildung

Kundenauftrag:

Auf dem Parkplatz eines mittelständischen Unternehmens soll in einer Fahrradgarage ein weiterer Fahrradständer aufgestellt werden. Dafür soll in Ihrem Unternehmen eine passende Konstruktion nach Kundenzeichnung gefertigt werden.

Erstellung der Lern- und Arbeitsaufgabe durch Nutzung eines Aufgaben-Managers

5. Fazit und Ausblick

5. Fazit und Ausblick

- Didaktisches Konzept und digitale Medien ermöglichen
 - individuelle Lernziele und Ausbildungsdauer
 - Binnendifferenzierung für verschiedene Zielgruppen (angehende Fachkräfte, Ungelernte, Menschen mit Migration)
- Schweißsimulation kann die Ausbildung unterstützen, aber nicht die Schweißkabine ersetzen
- Praxisbeispiele inklusive didaktisch-methodischer
 Hinweise für die unterrichtliche Umsetzung sind wichtig
- vielfältige Anforderungen für die Lehrenden nicht nur in fachlicher Hinsicht (Integration in Train-the-trainer-Konzept)

5. Fazit und Ausblick

- vertiefte Verzahnung der Lernorte (inhaltlich, methodisch) anhand prozessorientierter
 Aufgabenstellungen
- Erprobungen und Evaluation in BBS, beteiligten Unternehmen und in ÜBZ
- Erweiterung der moodle-Plattform durch die Nutzer/innen (mit Administrator/in)
- Entwicklung eines E-Portfolio für Feedback und Reflexion
- Einsatzmöglichkeiten des Schweißsimulators für weitere Anwendungsfeldern identifizieren

Vielen Dank für ihre Aufmerksamkeit!

- Haben Sie noch Fragen?
- Kontaktdaten:
 - Dipl.-Päd. Sven Schulte
 - Mail: <u>sven.schulte@tu-dortmund.de</u>
- Homepage des Projekts:
- http://mesa.ikap.biba.uni-bremen.de/